Teaching Semantic-Syntactic Categories to a Child Who Uses AAC
Kelly Rowe¹, Cathy Binger², Jennifer Kent-Walsh², Eliza Webb¹, & Marika King¹
¹University of New Mexico; ²University of Central Florida

Background
Children who use AAC:
 • Usually have severe, congenital motor speech impairments
 • May have large receptive-expressive language gaps (Binger et al., 2010; Kent-Walsh et al., 2010)
 • Tend to use single symbol messages (Binger & Light, 2008)
 • Tend to have difficulty expressing multi-symbol messages (Smith & Grove, 2003)
 • Have difficulties translating spoken messages into graphic symbol representations of the messages
 • Mapping spoken language onto an SGD is not an intuitive task for young children (Sutton et al., 2010).

Research Question:
 • What is the effect of an intervention designed to highlight spoken language word order on the productive use of two-term semantic-syntactic relations by a preschooler who used aided AAC?

Method
Design
 • Single case, multiple probe across targets
Participant
 • Jorge, age 5;1, Developmentally Delayed with motor speech impairment
Materials
 • Puppets, Photographs, Dynavox 4
Measures
 • Number of correct two-term semantic-syntactic relations
Key components of intervention:
 • Aided AAC modeling (Binger & Light, 2007)
 • Contrastive targets (Courtright & Courtright, 1976)

Results and Discussion
Possessor-entity
 • Minimal gains and challenging behaviors lead to the discontinuation of the target
 • Lack of salience of the target may have contributed to these issues
Action-object
 • Made considerable gains
 • Success slightly delayed
Attribute-entity
 • Made considerable gains
 • Immediate and steady improvement
 • Acquired second target more quickly than first
 • May demonstrate that Jorge was able to overcome the difficulties inherent in learning to map spoken language onto an SGD
Directions for future research
 • Replicate with children with similar profiles
 • Explore word order issues
 • Analyze path of progress for 3-term messages
 • E.g., agent-action-object

References